Interested in a hands-on learning experience for developing LLM applications?
Join our LLM Bootcamp today!

HomePython Essentials SeriesFeature Engineering Using Python

Feature Engineering Using Python

A course by
November, 2024 15 lessons English
Data enrichment is the process of enhancing, refining, and improving raw data by adding more information to it from external sources. This can include adding additional fields, filling in missing values, correcting errors, and providing more context about the data. The goal is to make the data more complete, accurate, and useful for analysis. An example of data enrichment is adding geographic data to a dataset. For instance, suppose you have a dataset containing a list of customers and their orders, but it doesn’t contain any information about where these customers live. By using an external geocoding service, you can enrich the dataset by adding latitude and longitude coordinates to each customer’s address. This information can be used to analyze patterns in customer locations, visualize the data on a map, or combine it with other geospatial data to gain further insights. Data enrichment is a powerful technique that can help to improve the quality and usefulness of data by adding more information to it. It is useful in a variety of contexts, including marketing, sales, customer service, and research, where having more complete and accurate data can lead to better insights and decisions.

Courses you might be interested in

This module is designed to equip us with the foundational programming knowledge and theory needed to excel in the bootcamp. By covering essential Python concepts and tools, it helps us...
  • 12 Lessons
$100.00
In this module, you will explore the world of large language models (LLMs), including their components, how they process information, and the challenges of adopting them in enterprise settings. You...
  • 7 Lessons
$100.00
In this module, you will explore key concepts of transformer architecture, embeddings, attention mechanisms, and tokenization. You’ll gain a deeper understanding of semantic similarity and how it is calculated using...
  • 5 Lessons
$100.00
In this module, you will explore the fundamentals of prompt engineering, including key concepts like in-context learning, designing effective prompts, and using various prompting techniques. You will learn how to...
  • 12 Lessons
$100.00